Резонанс напряжений. Что такое резонанс в электрической цепи


В колебательном контуре, обладающем индуктивностью L, емкостью C и сопротивлением R, свободные электрические колебания имеют тенденцию к затуханию. Чтобы колебания не затухали, необходимо периодически пополнять контур энергией, тогда возникнут вынужденные колебания, которые не будут затухать, ведь внешняя переменная ЭДС станет теперь поддерживать колебания в контуре.

Если колебания поддерживать источником внешней гармонической ЭДС, частота которой f очень близка к резонансной частоте колебательного контура F, то амплитуда электрических колебаний U в контуре станет резко возрастать, то есть наступит явление электрического резонанса .


Рассмотрим сначала поведение конденсатора C в цепи переменного тока. Если к генератору, напряжение U на выводах которого меняется по гармоническому закону, присоединить конденсатор C, то заряд q на обкладках конденсатора станет меняться также по гармоническому закону, как и ток I в цепи. Чем больше емкость конденсатора, и чем выше частота f, прикладываемой к нему гармонической ЭДС, тем больше окажется ток I.

С этим фактом связано представление о так называемом емкостном сопротивлении конденсатора XC, которое он вносит в цепь переменного тока, ограничивая ток подобно активному сопротивлению R, но в сравнении с активным сопротивлением, конденсатор не рассеивает энергию в виде тепла.

Если активное сопротивление рассеивает энергию, и таким образом ограничивает ток, то конденсатор ограничивает ток просто из-за того, что в нем не успевает уместиться больше заряда, чем генератор может дать за четверть периода, к тому же в следующую четверть периода конденсатор отдает энергию, которая накопилась в электрическом поле его диэлектрика, обратно генератору, то есть хоть ток и ограничен, энергия не рассеивается (потерями в проводах и в диэлектрике пренебрежем).


Теперь рассмотрим поведение индуктивности L в цепи переменного тока. Если вместо конденсатора присоединить к генератору катушку, обладающую индуктивностью L, то при подаче от генератора синусоидальной (гармонической) ЭДС на выводы катушки, - в ней начнет возникать ЭДС самоиндукции , поскольку при изменении тока через индуктивность, увеличивающееся магнитное поле катушки стремится препятствовать росту тока (закон Ленца), то есть получается, что катушка вносит в цепь переменного тока индуктивное сопротивление XL - дополнительное к сопротивлению провода R.

Чем больше индуктивность данной катушки, и чем выше частота F тока генератора, тем выше индуктивное сопротивление XL и меньше ток I, ведь ток просто не успевает устанавливаться, потому что ЭДС самоиндукции катушки ему мешает. И каждые четверть периода энергия, накопленная в магнитном поле катушки, возвращается к генератору (потерями в проводах пока пренебрежем).


В любом реальном колебательном контуре последовательно соединены индуктивность L, емкость C и активное сопротивление R.

Индуктивность и емкость действуют на ток противоположно в каждую четверть периода гармонической ЭДС источника: на обкладках конденсатора , хотя уменьшается ток, а при нарастании тока через индуктивность ток хоть и испытывает индуктивное сопротивление, но нарастает и поддерживается.

И во время разряда: разрядный ток конденсатора сначала большой, напряжение на его обкладках стремится установить большой ток, а индуктивность препятствует увеличению тока, и чем больше индуктивность, тем меньший разрядный ток будет иметь место. При этом активное сопротивление R вносит чисто активные потери. То есть полное сопротивление Z, последовательно включенных L, C и R, при частоте источника f, будет равно:

Из закона Ома для переменного тока очевидно, что амплитуда вынужденных колебаний пропорциональна амплитуде ЭДС и зависит от частоты. Полное сопротивление цепи будет наименьшим, а амплитуда тока будет наибольшей при условии, что индуктивное сопротивление и емкостное при данной частоте равны между собой, в этом случае наступит резонанс. Отсюда же выводится формула для резонансной частоты колебательного контура :

Когда источник ЭДС, емкость, индуктивность и сопротивление включены между собой последовательно, то резонанс в такой цепи называется последовательным резонансом или резонансом напряжений. Характерная черта резонанса напряжений - значительные напряжения на емкости и на индуктивности, по сравнению с ЭДС источника.

Причина появления такой картины очевидна. На активном сопротивлении по закону Ома будет напряжение Ur, на емкости Uc, на индуктивности Ul, и составив отношение Uc к Ur можно найти величину добротности Q. Напряжение на емкости будет в Q раз больше ЭДС источника, такое же напряжение окажется приложенным к индуктивности.

То есть резонанс напряжений приводит к возрастанию напряжения на реактивных элементах в Q раз, а резонансный ток будет ограничен ЭДС источника, его внутренним сопротивлением и активным сопротивлением цепи R. Таким образом, сопротивление последовательного контура на резонансной частоте минимально.

Явление резонанса напряжений используют в , например если необходимо устранить из передаваемого сигнала составляющую тока определенной частоты, то параллельно приемнику ставят цепочку из соединенных последовательно конденсатора и катушки индуктивности, чтобы ток резонансной частоты этой LC-цепочки замкнулся бы через нее, и не попал к бы приемнику.

Тогда токи частоты далекой от резонансной частоты LC-цепочки будут проходить в нагрузку беспрепятственно, и только близкие к резонансу по частоте токи - будут находить себе кротчайший путь через LC-цепочку.

Или наоборот. Если необходимо пропустить только ток определенной частоты, то LC-цепочку включают последовательно приемнику, тогда составляющие сигнала на резонансной частоте цепочки пройдут к нагрузке почти без потерь, а частоты далекие от резонанса окажутся сильно ослаблены и можно сказать, что к нагрузке совсем не попадут. Данный принцип применим к радиоприемникам, где перестраиваемый колебательный контур настраивают на прием строго определенной частоты нужной радиостанции.

Вообще резонанс напряжений в электротехнике является нежелательным явлением, поскольку он вызывает перенапряжения и выход из строя оборудования.

В качестве простого примера можно привести длинную кабельную линию, которая по какой-то причине оказалась не подключенной к нагрузке, но при этом питается от промежуточного трансформатора. Такая линия с распределенной емкостью и индуктивностью, если ее резонансная частота совпадет с частотой питающей сети, просто будет пробита и выйдет из строя. Чтобы предотвратить разрушение кабелей от случайного резонанса напряжений, применяют вспомогательную нагрузку.

Но иногда резонанс напряжений играет нам на руку и не только в радиоприемниках. Например, бывает, что в сельской местности напряжение в сети непредсказуемо упало, а станку нужно напряжение не менее 220 вольт. В этом случае явление резонанса напряжений спасает.

Достаточно последовательно со станком (если приводом в нем является асинхронный двигатель) включить по несколько конденсаторов на фазу, и таким образом напряжение на обмотках статора поднимется.

Здесь важно правильно подобрать количество конденсаторов, чтобы они точно скомпенсировали своим емкостным сопротивлением вместе с индуктивным сопротивлением обмоток просадку напряжения в сети, то есть слегка приблизив цепь к резонансу - можно поднять упавшее напряжение даже под нагрузкой.


Когда источник ЭДС, емкость, индуктивность и сопротивление включены между собой параллельно, то резонанс в такой цепи называется параллельным резонансом или резонансом токов. Характерная черта резонанса токов - значительные токи через емкость и индуктивность, по сравнению с током источника.

Причина появления такой картины очевидна. Ток через активное сопротивление по закону Ома будет равен U/R, через емкость U/XC, через индуктивность U/XL, и составив отношение IL к I можно найти величину добротности Q. Ток через индуктивность будет в Q раз больше тока источника, такой же ток будет течь каждые пол периода в конденсатор и из него.

То есть резонанс токов приводит к возрастанию тока через реактивные элементы в Q раз, а резонансная ЭДС будет ограничена ЭДС источника, его внутренним сопротивлением и активным сопротивлением цепи R. Таким образом, на резонансной частоте сопротивление параллельного колебательного контура максимально.

Аналогично резонансу напряжений, резонанс токов применяется в различных фильтрах. Но включенный в цепь, параллельный контур действует наоборот, чем в случае с последовательным: установленный параллельно нагрузке, параллельный колебательный контур позволит току резонансной частоты контура пройти в нагрузку, поскольку сопротивление самого контура на собственной резонансной частоте максимально.

Установленный последовательно с нагрузкой, параллельный колебательный контур не пропустит сигнал резонансной частоты, поскольку все напряжение упадет на контуре, а на нагрузку придется мизерная доля сигнала резонансной частоты.

Так, основное применение резонанса токов в радиотехнике - создание большого сопротивления для тока определенной частоты в ламповых генераторах и усилителях высокой частоты.

В электротехнике резонанс токов используется с целью достижения высокого коэффициента мощности нагрузок, обладающих значительными индуктивными и емкостными составляющими.

Например, представляют собой конденсаторы, подключаемые параллельно обмоткам асинхронных двигателей и трансформаторов, работающих под нагрузкой ниже номинальной.

К таким решениям прибегают как раз с целью достижения резонанса токов (параллельного резонанса), когда индуктивное сопротивление оборудования делается равным емкостному сопротивлению подключаемых конденсаторов на частоте сети, чтобы реактивная энергия циркулировала между конденсаторами и оборудованием, а не между оборудованием и сетью; чтобы сеть отдавала энергию только тогда, когда оборудование нагружено и потребляет активную мощность.

Когда же оборудование работает в холостую, сеть оказывается подключена параллельно резонансному контуру (внешние конденсаторы и индуктивность оборудования), который представляет для сети очень большое комплексное сопротивление и позволяет снизиться .

Реактивное сопротивление или проводимость двухполюсника, в состав которого входят конденсаторы и катушки индуктивности, в зависимости от частоты приложенного напряжения могут принимать как положительные, так и отрицательные значения. При определенных условиях реактивное сопротивление (проводимость) может оказаться равным нулю, а эквивалентное сопротивление (проводимость) всей цепи становится активным. В этом случае ток и напряжение на входе цепи совпадают по фазе. Такое явление называют резонансом , а соотношение −условием резонанса .

Эквивалентные параметры двухполюсника связаны соотношениями

и
,

поэтому условие
эквивалентно выполнению равенств
или
.

Из условий
,
могут быть определены значения параметров элементов электрической цепи, при которых наблюдается явление резонанса, а также значения частотырезонанса.

Если для двухполюсника
и
, то для определения значений резонансных частот может быть использовано любое из условий
или
.

В случае, когда активное эквивалентное сопротивление или активная эквивалентная проводимость двухполюсника равны нулю, для определения значений резонансных частот следует использовать оба условия
и
, так как при этом
. Равенства
и
выполняются, в частности, для цепей, содержащих только катушки индуктивности и конденсаторы.

Для описания частотных свойств электрических цепей широко используются частотные характеристики. Под частотными характеристиками понимают зависимости от частоты входных параметров цепи: r , x , z , g , b , y , а также величин, определяемых этими параметрами
,
и т.д. Рассмотрим далее частотные свойства простейших цепей, в которых возможен резонанс.

Резонанс в цепи при последовательном соединении элементов

Рассмотрим цепь, изображенную на рис. 10.1а

Комплексное сопротивление цепи равно

Угол сдвига между входным током и напряжением
обращается в нуль при равенстве нулю реактивного сопротивления цепи, то есть при выполнении условия
. Таким образом, состояние резонанса в цепи наступает при частоте
. Эта угловая частота называетсярезонансной . Векторная диаграмма для токов и напряжений в последовательном rLC контуре, построенная при
, изображена на рис. 10.1б. Как видно из векторной диаграммы, вектораи
равны по величине и противоположны по направлению, таким образом, напряжение
при резонансной частоте равно нулю. Индуктивное и равное ему емкостное сопротивление цепи при резонансной частоте

,

обозначаемое символом , носит названиеволнового сопротивления колебательного контура и измеряется в омах.

Отношение волнового сопротивления к активному сопротивлению в последовательном колебательном контуре называется добротностью , а величина, обратная добротности − затуханием :

,
.

Как следует из приведенных соотношений, добротность и затухание являются безразмерными величинами. Поскольку во всех элементах цепи, изображенной на рис. 10.1а протекает один и тот же ток, добротность показывает, во сколько раз напряжение на реактивных элементах при резонансе превышает входное напряжение. В реальных колебательных контурах эта величина может достигать значительного уровня. Поэтому резонанс в цепи с последовательным соединением элементов r , L , C иногда называютрезонансом напряжений .

При резонансной частоте полное сопротивление z

равно сопротивлению резистора r , ток и входное напряжение совпадают по фазе.

Таким образом, вся мощность, поставляемая в цепь источником, равна активной мощности, потребляемой единственным резистивным элементом, а реактивная мощность цепи равна нулю. Это означает, что в резонансе взаимный обмен энергии происходит только между конденсатором и катушкой индуктивности. Уменьшение энергии электрического поля при разряде конденсатора сопровождается увеличением энергии магнитного поля катушки и наоборот. Обмен энергией между источником и реактивными элементами отсутствует.

Рассмотрим частотные свойства цепи с последовательно соединенными элементами r , L , C . Будем считать, что на входе цепи действует синусоидальное напряжение с постоянной амплитудой и угловой частотой , меняющейся в пределах от 0 до ∞ . Изменение частоты приводит к изменению параметров цепиx , z , . На рисунке 10.2 приведены соответствующие частотные характеристики

,

Активное сопротивление рассматриваемой цепи не зависит от частоты, а реактивное при определенных значениях частоты (
) становится равным либо нулю либо бесконечности. Эти характерные значения называют соответственно нулями и полюсами частотной характеристики. Важным свойством функции
является то, что она монотонно возрастает при увеличении частоты
. В интервале частот
реактивное сопротивление возрастает от − ∞ до 0 и имеетемкостной характер, при
реактивное сопротивление возрастает от 0 до ∞ и имеетиндуктивный характер.

Рассмотрим зависимость тока в rLC контуре от частоты приложенного напряжения:

.

Анализ этого выражения показывает, что при
максимального значения
ток достигает в точке, соответствующей резонансной частоте.

Важной характеристикой rLC контура является ширина резонансной кривой или полоса пропускания, которую определяют как разность верхнейи нижнейчастот, для которых отношение
составляет
:

.

Частоты и, ограничивающие полосу пропускания, могут быть определены из соотношения

,

откуда следует, что на границах полосы пропускания реактивные сопротивления по абсолютной величине равны активному

.

Последнее соотношение эквивалентно равнству

,

Откуда
,
.

Разность частот и(полоса пропускания) определяется выражением

Если построить зависимость
в системе относительных координат
,
(рис.10.3), то ширина полосы пропускания оказывается равной затуханию контура.

В выражении напряжения на катушке индуктивности
оба сомножителя зависят от частоты. При
напряжение
. С увеличением частоты напряжение
возрастает и стремится к входному при
. Можно показать, что при
эта зависимость монотонна, а при
имеет максимум (рис. 10.4).

Напряжение на конденсаторе . При
ток в контуре отсутствует и все входное напряжение оказывается приложенным к конденсатору. При
напряжение на конденсаторе стремится к нулю. Для цепи, добротность которой превышает
, зависимость
имеет максимум; если
, напряжение на конденсаторе монотонно уменьшается с ростом частоты.

САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ

Электрические цепи переменного тока Явление резонанса.

Выполнил:

Антропов А. И.

Проверила:

Бородина А. В.

Самара 2009

Электрические цепи переменного тока. Явление резонанса

Явление резонанса относится к наиболее важным с практической точки зрения свойствам электрических цепей. Оно заключается в том, что электрическая цепь, имеющая реактивные элементы обладает чисто резистивным сопротивлением .

Общее условие резонанса для любого двухполюсника можно сформулировать в виде Im[Z ]=0 или Im[Y ]=0, где Z и Y комплексное сопротивление и проводимость двухполюсника. Следовательно, режим резонанса полностью определяется параметрами электрической цепи и не зависит от внешнего воздействия на нее со стороны источников электрической энергии.

Для определения условий возникновения режима резонанса в электрической цепи нужно:

· найти ее комплексное сопротивление или проводимость;

· выделить мнимую часть и приравнять нулю.

Все параметры электрической цепи, входящие в полученное уравнение, будут в той или иной степени влиять на характеристики явления резонанса.

Уравнение Im[Z ]=0 может иметь несколько корней решения относительно какого-либо параметра. Это означает возможность возникновения резонанса при всех значениях этого параметра, соответствующих корням решения и имеющих физический смысл.

В электрических цепях резонанс может рассматриваться в задачах:

· анализа этого явления при вариации параметров цепи;

· синтеза цепи с заданными резонансными параметрами.

Электрические цепи с большим количеством реактивных элементов и связей могут представлять значительную сложность при анализе и почти никогда не используются для синтеза цепей с заданными свойствами, т.к. для них не всегда возможно получить однозначное решение. Поэтому на практике исследуются простейшие двухполюсники и с их помощью создаются сложные цепи с требуемыми параметрами.

Сдвиг фаз между током и напряжением. Понятие двухполюсника

Простейшими электрическими цепями, в которых может возникать резонанс, являются последовательное и параллельное соединения резистора, индуктивности и емкости. Соответственно схеме соединения, эти цепи называются последовательным и параллельным резонансным контуром . Наличие резистивного сопротивления в резонансном контуре по определению не является обязательным и оно может отсутствовать как отдельный элемент (резистор). Однако при анализе резистивным сопротивлением следует учитывать по крайней мере сопротивления проводников.

Последовательный резонансный контур представлен на рис. 1 а). Комплексное сопротивление цепи равно

Условием резонанса из выражения (1) будет


Таким образом, резонанс в цепи наступает независимо от значения резистивного сопротивления R когда индуктивное сопротивление x L = wL равно емкостному x C = 1/(wC ) . Как следует из выражения (2), это состояние может быть получено вариацией любого их трех параметров - L , C и w , а также любой их комбинацией. При вариации одного из параметров условие резонанса можно представить в виде

Все величины, входящие в выражение (3) положительны, поэтому эти условия выполнимы всегда, т.е. резонанс в последовательном контуре можно создать

· изменением индуктивности L при постоянных значениях C и w ;

· изменением емкости C при постоянных значениях L и w ;

· изменением частоты w при постоянных значениях L и C .

Наибольший интерес для практики представляет вариация частоты. Поэтому рассмотрим процессы в контуре при этом условии.

При изменении частоты резистивная составляющая комплексного сопротивления цепи Z остается постоянной, а реактивная изменяется. Поэтому конец вектора Z на комплексной плоскости перемещается по прямой параллельной мнимой оси и проходящей через точку R вещественной оси (рис. 1 б)). В режиме резонанса мнимая составляющая Z равна нулю и Z = Z = Z min = R , j = 0 , т.е. полное сопротивление при резонансе соответствует минимальному значению .

Индуктивное и емкостное сопротивления изменяются в зависимости от частоты так, как показано на рис. 2. При частоте стремящейся к нулю x C ®µ , x L ® 0 , и j® - 90° (рис. 1 б)). При бесконечном увеличении частоты - x L ®µ , x C ® 0 , а j® 90° . Равенство сопротивлений x L и x C наступает в режиме резонанса при частоте w 0 .

Рассмотрим теперь падения напряжения на элементах контура. Пусть резонансный контур питается от источника, обладающего свойствами источника ЭДС, т.е. напряжение на входе контура u = const, и пусть ток в контуре равен i =I m sinwt . Падение напряжения на входе уравновешивается суммой напряжений на элементах

Переходя от амплитудных значений к действующим, из выражения (4) получим напряжения на отдельных элементах контура

А при резонансной частоте

величина, имеющая размерность сопротивления и называемая волновым или характеристическим сопротивлением контура.

Следовательно, при резонансе

· напряжение на резисторе равно напряжению на входе контура;

· напряжения на реактивных элементах одинаковы и пропорциональны волновому сопротивлению контура;

· соотношение напряжения на входе контура (на резисторе) и напряжений на реактивных элементах определяется соотношением резистивного и волнового сопротивлений.

Отношение волнового сопротивления к резистивному r /R = Q , называется добротностью контура , а величина обратная D =1/Q - затуханием . Таким образом, добротность числено равна отношению напряжения на реактивном элементе контура к напряжению на резисторе или на входе в режиме резонанса. Добротность может составлять несколько десятков единиц и во столько же раз напряжение на реактивных элементах контура будет превышать входное. Поэтому резонанс в последовательном контуре называется резонансом напряжений .

Рассмотрим зависимости напряжений и тока в контуре от частоты. Для возможности обобщенного анализа перейдем в выражениях (5) к относительным единицам, разделив их на входное напряжение при резонансе

U =RI 0


где i =I /I 0 , u k =U k /U , v = w /w 0 - соответственно ток, напряжение и частота в относительных единицах, в которых в качестве базовых величин приняты ток I 0 , напряжение на входе U и частота w 0 в режиме резонанса.

Абсолютный и относительный ток в контуре равен

Из выражений (7) и (8) следует, что характер изменения всех величин при изменении частоты зависит только от добротности контура. Графическое представление их при Q =2 приведено на рис. 3 в логарифмическом (а) и линейном (б) масштабах оси абсцисс.

На рис. 3 кривые A (v), B (v) и C (v) соответствуют напряжению на индуктивности, емкости и резисторе или току в контуре. Кривые A (v)=u L (v) и B (v)=u C (v) имеют максимумы, напряжения в которых определяются выражением

, (9)

а относительные частоты максимумов равны

(10)

При увеличении добротности Q ®µA max = B max ®Q , а v 1 ®1.0 и v 2 ®1.0.


С уменьшением добротности максимумы кривых u L (v) и u С (v) смещаются от резонансной частоты, а при Q 2 < 1/2 исчезают, и кривые относительных напряжений становятся монотонными.

Напряжение на резисторе и ток в контуре имеют при резонансной частоте максимум равный 1,0. Если на оси ординат отложить абсолютные значения тока или напряжения на резисторе, то для различных значений добротности они будут иметь вид, показанный на рис. 4. В целом они дают представление о характере изменения величин, но удобнее делать сопоставление в относительных единицах.

На рис. 5 представлены кривые рис. 4 в относительных единицах. Здесь видно, что увеличение добротности влияет на скорость изменения тока при изменении частоты.

Можно показать, что разность относительных частот, соответствующих значениям относительного тока

, равна затуханию контура D =1/Q =v 2 -v 1 .

Перейдем теперь к анализу зависимости фазового сдвига между током и напряжением на входе контура от частоты. Из выражения (1) угол j равен

Резонансом называется такой режим работы цепи, включающей в себя индуктивные и емкостные элементы, при котором ее входное сопротивление (входная проводимость) вещественно. Следствием этого является совпадение по фазе тока на входе цепи с входным напряжением.

Резонанс в цепи с последовательно соединенными элементами
(резонанс напряжений)

Для цепи на рис.1 имеет место

; (1)
. (2)

В зависимости от соотношения величин и возможны три различных случая.

1. В цепи преобладает индуктивность, т.е. , а следовательно,

Этому режиму соответствует векторная диаграмма на рис. 2,а.

2.В цепи преобладает емкость, т.е. , а значит, . Этот случай отражает векторная диаграмма на рис. 2,б.

3. - случай резонанса напряжений (рис. 2,в).

Условие резонанса напряжений

. (3)

При этом, как следует из (1) и (2), .

При резонансе напряжений или режимах, близких к нему, ток в цепи резко возрастает. В теоретическом случае при R=0 его величина стремится к бесконечности. Соответственно возрастанию тока увеличиваются напряжения на индуктивном и емкостном элементах, которые могут во много раз превысить величину напряжения источника питания.

Пусть, например, в цепи на рис. 1 . Тогда , и, соответственно, .

Явление резонанса находит полезное применение на практике, в частности в радиотехнике. Однако, если он возникает стихийно, то может привести к аварийным режимам вследствие появления больших перенапряжений и сверхтоков.

Физическая сущность резонанса заключается в периодическом обмене энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, причем сумма энергий полей остается постоянной.

Суть дела не меняется, если в цепи имеется несколько индуктивных и емкостных элементов. Действительно, в этом случае , и соотношение (3) выполняется для эквивалентных значений L Э и C Э.

Как показывает анализ уравнения (3), режима резонанса можно добиться путем изменения параметров L и C, а также частоты. На основании (3) для резонансной частоты можно записать

. (4)

Резонансными кривыми называются зависимости тока и напряжения от частоты. В качестве их примера на рис. 3 приведены типовые кривые I(f); и для цепи на рис. 1 при U=const.

Важной характеристикой резонансного контура является добротность Q, определяемая отношением напряжения на индуктивном (емкостном) элементе к входному напряжению:

или с учетом (4) и (5) для можно записать:

. (9)

В зависимости от соотношения величин и , как и в рассмотренном выше случае последовательного соединения элементов, возможны три различных случая.

В цепи преобладает индуктивность, т.е. , а следовательно, . Этому режиму соответствует векторная диаграмма на рис. 5,а.

В цепи преобладает емкость, т.е. , а значит, . Этот случай иллюстрирует векторная диаграмма на рис. 5,б.

Случай резонанса токов (рис. 5,в).

Условие резонанса токов или

. (10)

При этом, как следует из (8) и (9), . Таким образом, при резонансе токов входная проводимость цепи минимальна, а входное сопротивление, наоборот, максимально. В частности при отсутствии в цепи на рис. 4 резистора R ее входное сопротивление в режиме резонанса стремится к бесконечности, т.е. при резонансе токов ток на входе цепи минимален.

Идентичность соотношений (3) и (5) указывает, что в обоих случаях резонансная частота определяется соотношением (4). Однако не следует использовать выражение (4) для любой резонансной цепи. Оно справедливо только для простейших схем с последовательным или параллельным соединением индуктивного и емкостного элементов.

При определении резонансной частоты в цепи произвольной конфигурации или, в общем случае, соотношения параметров схемы в режиме резонанса следует исходить из условия вещественности входного сопротивления (входной проводимости) цепи.

Например, для цепи на рис. 6 имеем

Поскольку в режиме резонанса мнимая часть должна быть равна нулю, то условие резонанса имеет вид

,

откуда, в частности, находится резонансная частота.

Резонанс в сложной цепи

Условие резонанса для сложной цепи со смешанным соединением нескольких индуктивных и емкостных элементов, заключающееся в равенстве нулю мнимой части входного сопротивления или входной проводимости , определяет наличие у соответствующих этому условию уравнений относительно нескольких вещественных корней, т.е. таким цепям соответствует несколько резонансных частот.

В том случае, когда электрическая цепь содержит элементы с емкостными, а также с индуктивными свойствами может возникнуть режим резонанса. Кроме того, резонанс в электрической цепи появляется в случае совпадения по фазе тока и напряжения. Реактивное сопротивление и проводимость на входе имеют нулевое значение. Полностью отсутствует сдвиг фаз, и цепь становится активной.

Причины резонанса

Резонанс напряжений появляется в случае последовательного соединения участков, содержащих сопротивления индуктивного и емкостного характера, а также резисторы. Такая простая цепь очень часто носит название последовательного или параллельного контура.

В резонансном контуре вовсе не обязательно присутствие резистивного сопротивления. Тем не менее, его необходимо учитывать при определении сопротивления проводников. Таким образом, резонансный режим полностью зависит от параметров и свойств электрической цепи. На него никак не влияют внешние источники электрической энергии.

Для того, чтобы определить условия, при которых возникает режим резонанса, необходимо проверить электрическую цепь с целью определения ее проводимости или комплексного . Кроме того, её мнимая часть должна быть выделена и приравнена к нулю.

Характеристики резонанса

Все параметры, входящие в цепь, и присутствующие в полученном уравнении, так или иначе, влияют на показатели, характеризующие резонансные явления. В зависимости от параметров, входящих в состав уравнения, решение может иметь несколько различных вариантов. При этом, все решения будут соответствовать собственному варианту и в дальнейшем обретать физический смысл.

В различных видах электро цепей, явление резонанса рассматривается, как правило, при анализе в случае нескольких вариантов. В этих же случаях может проводиться синтез цепи, в котором заранее заданы резонансные параметры.

Электрические цепи которые имеют большое количество связей и реактивных элементов, представляют собой серьезную проблему при проведении анализа. Их никогда не используют при синтезе с заранее заданными свойствами, поскольку далеко не всегда возможно получение желаемого результата. Поэтому, в практической деятельности производится исследование двухполюсных приборов самых простых конструкций и на основании полученных данных проводится создание более сложных цепей с заранее заданными параметрами.

Таким образом, резонанс электрической цепи представляет собой достаточно сложное явление, благодаря использованию в ней определенных элементов. Учет этого явления позволяет наиболее полно определить параметры и прочие характеристики.

Резонансы токов и напряжений