Управляемый мультивибратор на транзисторах своими руками. Схема простого мультивибратора для мощной нагрузки (КТ972, КТ973)


Мультивибратор схема которого показана на рисунке 1 представляет собой каскадное соединение транзисторных усилителей где выход первого каскада подключен ко входу второго через цепь содержащую конденсатор и выход второго каскада подключен ко входу первого через цепь содержащую конденсатор. Усилители мультивибратора представляют собой транзисторные ключи которые могут находиться в двух состояниях. Схема мультивибратора на рисунке 1 отличается от схемы триггера рассмотренного в статье " ". Тем что имеет в цепях обратной связи реактивные элементы поэтому схема может генерировать несинусоидальные колебания. Найти сопротивления резисторов R1 и R4 можно из соотношений 1 и 2:

Где I КБО =0.5мкА -максимальный обратный ток коллектора транзистора кт315а,

Iкmax=0.1А - максимальный ток коллектора транзистора кт315а, Uп=3В - напряжение питания. Выберем R1=R4=100Ом. Конденсаторы C1 и C2 выбираются в зависимости от того какая требуется частота колебаний мультивибратора.

Рисунок 1 - Мультивибратор на транзисторах КТ315А

Снимать напряжение можно между точками 2 и 3 или между точками 2 и 1. На графиках ниже показано как примерно будет меняться напряжение между точками 2 и 3 и между точками 2 и 1.

T - период колебаний, t1 - постоянная времени левого плеча мультивибратора, t2 - постоянная времени правого плеча мультивибратора могут быть рассчитаны по формулам:

Задавать частоту и скважность импульсов генерируемых мультивибратором можно изменяя сопротивления подстроечных резисторов R2 и R3. Можно также заменить конденсаторы C1 и C2 переменными (или подстроечными) и изменяя их ёмкость задавать частоту и скважность импульсов генерируемых мультивибратором, такой способ, даже, более предпочтителен, поэтому если есть подстроечные (или лучше переменные) конденсаторы то лучше их использовать, а на место переменных резисторов R2 и R3 поставить постоянные. На фотографии ниже показан собранный мультивибратор:

Для того чтобы убедиться в том что собранный мультивибратор работает к нему (между точками 2 и 3) был подключен пьезодинамик. После подачи питания на схему пьезодинамик начал трещать. Изменения сопротивлений подстроечных резисторов приводили либо к увеличению частоты звука издаваемого пьезодинамиком либо к её уменьшению или к тому что мультивибратор переставал генерировать.
Программа расчёта частоты, периода и постоянных времени, скважности импульсов снимаемых с мультивибратора:

Если программа не работает то скопируйте её html код в блокнот и сохраните в формате html.
Если используется браузер Internet Explorier и он блокирует работу программы, то необходимо разрешить заблокированное содержимое.


js отключен

Другие мультивибраторы:

Мультивибратор.

Первая схема - простейший мультивибратор. Не смотря не его простоту, область применения его очень широка. Ни одно электронное устройство не обходится без него.

На первом рисунке изображена его принципиальная схема.

В качестве нагрузки используются светодиоды. Когда мультивибратор работает - светодиоды переключаются.

Для сборки потребуется минимум деталей:

1. Резисторы 500 Ом - 2 штуки

2. Резисторы 10 кОм - 2 штуки

3. Конденсатор электролитический 47 мкФ на 16 вольт - 2 штуки

4. Транзистор КТ972А - 2 штуки

5. Светодиод - 2 штуки

Транзисторы КТ972А являются составными транзисторами, то есть в их корпусе имеется два транзистора, и он обладает высокой чувствительностью и выдерживает значительный ток без теплоотвода.

Когда вы приобретёте все детали, вооружайтесь паяльником и принимайтесь за сборку. Для проведения опытов не стоит делать печатную плату, можно собрать всё навесным монтажом. Спаивайте так, как показано на рисунках.

А уж как применить собранное устройство, пусть подскажет ваша фантазия! Например, вместо светодиодов можно поставить реле, а этим реле коммутировать более мощную нагрузку. Если изменить номиналы резисторов или конденсаторов – изменится частота переключения. Изменением частоты можно добиться очень интересных эффектов, от писка в динамике, до паузы на много секунд..

Фотореле.

А это схема простого фотореле. Это устройство с успехом можно применить где Вам угодно, для автоматической подсветки лотка DVD, для включения света или для сигнализации от проникновения в тёмный шкаф. Предоставлены два варианта схемы. В одном варианте схема активируется светом, а другом его отсутствием.

Работает это так: когда свет от светодиода попадает на фотодиод, транзистор откроется и начнёт светиться светодиод-2. Подстроечным резистором регулируется чувствительность устройства. В качестве фотодиода можно применить фотодиод от старой шариковой мышки. Светодиод - любой инфракрасный светодиод. Применение инфракрасного фотодиода и светодиода позволит избежать помех от видимого света. В качестве светодиода-2 подойдёт любой светодиод или цепочка из нескольких светодиодов. Можно применить и лампу накаливания. А если вместо светодиода поставить электромагнитное реле, то можно будет управлять мощными лампами накаливания, или какими-то механизмами.

На рисунках предоставлены обе схемы, цоколёвка(расположение ножек) транзистора и светодиода, а так же монтажная схема.

При отсутствии фотодиода, можно взять старый транзистор МП39 или МП42 и спилить у него корпус напротив коллектора, вот так:

Вместо фотодиода в схему надо будет включить p-n переход транзистора. Какой именно будет работать лучше – Вам предстоит определить экспериментально.

Усилитель мощности на микросхеме TDA1558Q.

Этот усилитель имеет выходную мощность 2 Х 22 ватта и достаточно прост для повторения начинающими радиолюбителями. Такая схема пригодится Вам для самодельных колонок, или для самодельного музыкального центра, который можно сделать из старого MP3 плеера.

Для его сборки понадобится всего пять деталей:

1. Микросхема - TDA1558Q

2. Конденсатор 0.22 мкФ

3. Конденсатор 0.33 мкФ – 2 штуки

4. Электролитический конденсатор 6800 мкФ на 16 вольт

Микросхема имеет довольно высокую выходную мощность и для её охлаждения понадобится радиатор. Можно применить радиатор от процессора.

Всю сборку можно произвести навесным монтажом без применения печатной платы. Сначала у микросхемы надо удалить выводы 4, 9 и 15. Они не используются. Отсчёт выводов идёт слева направо, если держать её выводами к себе и маркировкой вверх. Потом аккуратно распрямите выводы. Далее отогните выводы 5, 13 и 14 вверх, все эти выводы подключаются к плюсу питания. Следующим шагом отогните выводы 3, 7 и 11 вниз – это минус питания, или «земля». После этих манипуляций прикрутите микросхему к теплоотводу, используя теплопроводную пасту. На рисунках виден монтаж с разных ракурсов, но я всё же поясню. Выводы 1 и 2 спаиваются вместе – это вход правого канала, к ним надо припаять конденсатор 0.33 мкФ. Точно так же надо поступить с выводами 16 и 17. Общий провод для входа это минус питания или «земля».


Этот урок будет посвящен, довольно важной и востребованной теме, о мультивибраторах и их применении. Если бы я попытался только перечислить, где и как используются автоколебательные симметричные и несимметричные мультивибраторы, для этого потребовалось бы приличное кол - во страниц книги. Нет, пожалуй, такой отрасли радиотехники, электроники, автоматики, импульсной или вычислительной техники, где бы такие генераторы не применялись. В этом уроке будут даны теоретические сведения об этих устройствах, а в конце, я приведу несколько примеров практического использования их применительно к вашему творчеству.

Автоколебательный мультивибратор

Мультивибраторами называют электронные устройства, генерирующие электрические колебания, близкие по форме к прямоугольной. Спектр колебаний, генерируемых мультивибратором, содержит множество гармоник - тоже электрических колебаний, но кратных колебаниям основной частоты, что и отражено в его названии: "мульти - много", "вибро - колеблю".

Рассмотрим схему, показанную на (рис. 1,а). Узнаете? Да, это схема двухкаскадного транзисторного усилителя 3Ч с выходом на головные телефоны. Что произойдет, если выход такого усилителя соединить с его входом, как на схеме показано штриховой линией? Между ними возникает положительная обратная связь и усилитель самовозбудится станет генератором колебаний звуковой частоты, и в телефонах мы услышим звук низкого тона.С таким явлением в приемниках и усилителях ведут решительную борьбу, а вот для автоматически действующих приборов оно оказывается полезным.

Теперь посмотрите на (рис. 1,б). На нем вы видите схему того же усилителя, охваченного положительной обратной связью , как на (рис. 1, а), только начертание ее несколько изменено. Именно так обычно чертят схемы автоколебательных, т. е. самовозбуждающихся мультивибраторов. Опыт - самый лучший, пожалуй, метод познания сущности действия того или иного электронного устройства. В этом вы убеждались не раз. Вот и сейчас, чтобы лучше разобраться в работе этого универсального прибора - автомата, предлагаю провести опыт с ним. Принципиальную схему автоколебательного мультивибратора со всеми данными его резисторов и конденсаторов вы видите на (рис. 2, а). Смонтируйте его на макетной плате. Транзисторы должны быть низкочастотными (МП39 - МП42), так как у высокочастотных транзисторов очень маленькое пробивное напряжение эмиттерного перехода. Электролитические конденсаторы С1 и С2 - типа К50 - 6, К50 - 3 или их импортные аналоги на номинальное напряжение 10 - 12 В. Сопротивления резисторов могут отличаться от указанных на схеме до 50%. Важно лишь, чтобы возможно одинаковыми были номиналы нагрузочных резисторов Rl, R4 и базовых резисторов R2, R3. Для питания используйте батарею "Крона" или БП. В коллекторную цепь любого из транзисторов включите миллиамперметр (РА) на ток 10 - 15 мА, а к участку эмиттер - коллектор того же транзистора подключите высокоомный вольтметр постоянного тока (PU) на - напряжение до 10 В. Проверив монтаж и особенно внимательно полярность включения электролитических конденсаторов, подключите к мультивибратору источник питания. Что показывают измерительные приборы? Миллиамперметр - резко увеличивающийся до 8 - 10 мА, а затем также резко уменьшающийся почти до нуля ток коллекторной цепи транзистора. Вольтметр же, наоборот, то уменьшающееся почти до нуля, то увеличивающееся до напряжения источника питания коллекторное напряжение. О чем говорят эти измерения? О том, что транзистор этого плеча мультивибратора работает в режиме переключения. Наибольший коллекторный ток и одновременно наименьшее напряжение на коллекторе соответствуют открытому состоянию, а наименьший ток и наибольшее коллекторное напряжение - закрытому состоянию транзистора. Точно так работает и транзистор второго плеча мультивибратора, но, как говорят, со сдвигом фазы на 180° : когда один из транзисторов открыт, второй закрыт. В этом нетрудно убедиться, включив в коллекторную цепь транзистора второго плеча мультивибратора такой же миллиамперметр; стрелки измерительных приборов будут попеременно отклоняться от нулевых отметок шкал. Теперь, воспользовавшись часами с секундной стрелкой, сосчитайте, сколько раз в минуту транзисторы переходят из открытого состояния в закрытое. Примерно раз 15 - 20. Таково число электрических колебаний, генерируемых мультивибратором в минуту. Следовательно, период одного колебания равен 3 - 4 с. Продолжая следить за стрелкой миллиамперметра, попытайтесь изобразить эти колебания графически. По горизонтальной оси ординат откладывайте в некотором масштабе отрезки времени нахождения транзистора в открытом и закрытом состояниях, а по вертикальной - соответствующий этим состояниям коллекторный ток. У вас получится примерно такой же график, как тот, что изображен на рис. 2, б.

Значит, можно считать, что мультивибратор генерирует электрические колебания прямоугольной формы. В сигнале мультивибратора, независимо от того, с какого выхода он снимается, можно выделить импульсы тока и паузы между ними. Интервал времени с момента появления одного импульса тока (или напряжения) до момента появления следующего импульса той же полярности принято называть периодом следования импульсов Т, а время между импульсами длительностью паузы Тn - Мультивибраторы, генерирующие импульсы, длительность Тn которых равна паузам между ними, называют симметричными. Следовательно, собранный вами опытный мультивибратор - симметричный. Замените конденсаторы С1 и С2 другими конденсаторами емкостью по 10 - 15 мкФ. Мультивибратор остался симметричным, но частота генерируемых им колебаний увеличилась в 3 - 4 раза - до 60 - 80 в 1 мин или, что то же самое, примерно до частоты 1 Гц. Стрелки измерительных приборов еле успевают следовать за изменениями токов и напряжений в цепях транзисторов. А если конденсаторы С1 и С2 заменить бумажными емкостью по 0,01 - 0,05 мкФ? Как теперь будут вести себя стрелки измерительных приборов? Отклонившись от нулевых отметок шкал, они стоят на месте. Может быть, сорвана генерация? Нет! Просто частота колебаний мультивибратора увеличилась до нескольких сотен герц. Это колебания диапазона звуковой частоты, фиксировать которые приборы постоянного тока уже не могут. Обнаружить их можно с помощью частотомера или головных телефонов, подключенных через конденсатор емкостью 0,01 - 0,05 мкФ к любому из выходов мультивибратора или включив их непосредственно в коллекторную цепь любого из транзисторов вместо нагрузочного резистора. В телефонах услышите звук низкого тона. Каков принцип работы мультивибратора? Вернемся к схеме на рис. 2, а. В момент включения питания транзисторы обоих плеч мультивибратора открываются, так как на их базы через соответствующие им резисторы R2 и R3 подаются отрицательные напряжения смещения. Одновременно начинают заряжаться конденсаторы связи: С1 - через эмиттерный переход транзистора V2 и резистор R1; С2 - через эмиттерный переход транзистора V1 и резистор R4. Эти цепи зарядки конденсаторов, являясь делителями напряжения источника питания, создают на базах транзисторов (относительно эмиттеров) все возрастающие по значению отрицательные напряжения, стремящиеся все больше открыть транзисторы. Открывание транзистора вызывает снижение отрицательного напряжения на его коллекторе, что вызывает снижение отрицательного напряжения на базе другого транзистора, закрывая его. Такой процесс протекает сразу в обоих транзисторах, однако закрывается только один из них, на базе которого более высокое положительное напряжение, например, из - за разницы коэффициентов передачи токов h21э номиналов резисторов и конденсаторов. Второй транзистор остается открытым. Но эти состояния транзисторов неустойчивы, ибо электрические процессы в их цепях продолжаются. Допустим, что через некоторое время после включения питания закрытым оказался транзистор V2, а открытым - транзистор V1. С этого момента конденсатор С1 начинает разряжаться через открытый транзистор V1, сопротивление участка эмиттер - коллектор которого в это время мало, и резистор R2. По мере разрядки конденсатора С1 положительное напряжение на базе закрытого транзистора V2 уменьшается. Как только конденсатор полностью разрядится и напряжение на базе транзистора V2 станет близким нулю, в коллекторной цепи этого, теперь уже открывающегося транзистора появляется ток, который воздействует через конденсатор С2 на базу транзистора V1 и понижает отрицательное напряжение на ней. В результате ток, текущий через транзистор V1, начинает уменьшаться, а через транзистор V2, наоборот, увеличиваться. Это приводит к тому, что транзистор V1 закрывается, а транзистор V2 открывается. Теперь начнет разряжаться конденсатор С2, но через открытый транзистор V2 и резистор R3, что в конечном итоге приводит к открыванию первого и закрыванию второго транзисторов и т.д. Транзисторы все время взаимодействуют, в результате чего мультивибратор генерирует электрические колебания. Частота колебаний мультивибратора зависит как от емкости конденсаторов связи, что вами уже проверено, так и от сопротивления базовых резисторов, в чем вы можете убедиться сейчас же. Попробуйте, например, базовые резисторы R2 и R3 заменить резисторами больших сопротивлений. Частота колебаний мультивибратора уменьшится. И наоборот, если их сопротивления будут меньше, частота колебаний увеличится. Еще один опыт: отключите верхние (по схеме) выводы резисторов R2 и R3 от минусового проводника источника питания, соедините их вместе, а между ними и минусовым проводником включите реостатом переменный резистор сопротивлением 30 - 50 кОм. Поворачивая ось переменного резистора, вы в довольно широких пределах сможете изменять частоту колебаний мультивибраторов. Примерную частоту колебаний симметричного мультивибратора можно подсчитать по такой упрощенной формуле: F = 700/(RC), где f - частота в герцах, R - сопротивления базовых резисторов в килоомах, С - емкости конденсаторов связи в микрофарадах. Пользуясь этой упрощенной формулой, подсчитайте, колебания каких частот генерировал ваш мультивибратор. Вернемся к исходным данным резисторов и конденсаторов опытного мультивибратора (по схеме на рис. 2, а). Конденсатор С2 замените конденсатором емкостью 2 - 3 мкФ, в коллекторную цепь транзистора V2 включите миллиамперметр, следя за его стрелкой, изобразите графически колебания тока, генерируемые мультивибратором. Теперь ток в коллекторной цепи транзистора V2 будет появляться более короткими, чем раньше, импульсами (рис. 2, в). Длительность импульсов Тh будет примерно во столько же раз меньше пауз между импульсами Тh, во сколько уменьшилась емкость конденсатора С2 по сравнению с его прежней емкостью. А теперь тот же (или такой) миллиамперметр включите в коллекторную цепь транзистора V1. Что показывает измерительный прибор? Тоже импульсы тока, но их длительность значительно больше пауз между ними (рис. 2, г). Что же произошло? Уменьшив емкость конденсатора С2, вы нарушили симметрию плеч мультивибратора - он стал несимметричным . Поэтому и колебания, генерируемые им, стали несимметричными : в коллекторной цепи транзистора V1 ток появляется относительно длинными импульсами, в коллекторной цепи транзистора V2 - короткими. С Выхода 1 такого мультивибратора можно снимать короткие, а с Выхода 2 - длинные импульсы напряжения. Временно поменяйте местами конденсаторы С1 и С2. Теперь короткие импульсы напряжения будут на Выходе 1, а длинные - на Выходе 2. Сосчитайте (по часам с секундной стрелкой), сколько электрических импульсов в минуту генерирует такой вариант мультивибратора. Около 80. Увеличьте емкость конденсатора С1, подключив параллельно ему второй электролитический конденсатор емкостью 20 - 30 мкФ. Частота следования импульсов уменьшится. А если, наоборот, емкость этого конденсатора уменьшать? Частота следования импульсов должна увеличиваться. Есть, однако, иной способ регулирования частоты следования импульсов - изменением сопротивления резистора R2: с уменьшением сопротивления этого резистора (но не менее чем до 3 - 5 кОм, иначе транзистор V2 будет все время открыт и автоколебательный процесс нарушится) частота следования импульса должна возрастать, а с увеличением его сопротивления, наоборот, уменьшаться. Проверьте опытным путем - так ли это? Подберите резистор такого номинала, чтобы число импульсов в 1 мин составляло точно 60. Стрелка миллиамперметра будет колебаться с частотой 1 Гц. Мультивибратор в этом случае станет как бы электронным механизмом часов, отсчитывающих секунды.

Ждущий мультивибратор

Такой мультивибратор генерирует импульсы тока (или напряжения) при подаче на его вход запускающих сигналов от другого источника, например от автоколебательного мультивибратора. Чтобы автоколебательный мультивибратор, опыты с которым вы уже проводили в этом уроке (по схеме на рис. 2,а), превратить в мультивибратор ждущий, надо сделать следующее: конденсатор С2 удалить, а вместо него между коллектором транзистора V2 и базой транзистора V1 включить резистор (на рис. 3 - R3) сопротивлением 10 - 15 кОм; между базой транзистора V1 и заземленным проводником включить последовательно соединенные элемент 332 (G1 или другой источник постоянного напряжения) и резистор сопротивлением 4,7 - 5,1 кОм (R5), но так, чтобы с базой соединялся (через R5) положительный полюс элемента; к базовой цепи транзистора V1 поключить конденсатор (на рис. 3 - С2) емкостью 1 - 5 тыс. пФ, второй вывод которого будет выполнять роль контакта входного управляющего сигнала. Исходное состояние транзистора V1 такого мультивибратора - закрытое, транзистора V2 - открытое. Проверьте - так ли это? Напряжение на коллекторе закрытого транзистора должно быть близким к напряжению источника питания, а на коллекторе открытого транзистора - не превышать 0,2 - 0,3 В. Затем в коллекторную цепь транзистора V1 включите миллиамперметр на ток 10 - 15 мА и, наблюдая за его стрелкой, включите между контактом Uвх и заземленным проводником, буквально на мгновение, один - два элемента 332, соединенные последовательно (на схеме GB1) или батарею 3336Л. Только не перепутайте:, отрицательный полюс этого внешнего электрического сигнала должен подключаться к контакту Uвх. При этом стрелка миллиамперметра должна тут же отклониться до значения наибольшего тока коллекторной цепи транзистора, застыть на некоторое время, а затем вернуться в исходное положение, чтобы ожидать следующего сигнала. Повторите этот опыт несколько раз. Миллиамперметр при каждом сигнале будет показывать мгновенно возрастающий до 8 - 10 мА и спустя некоторое время, так же мгновенно убывающий почти до нуля коллекторный ток транзистора V1. Это одиночные импульсы тока, генерируемые мультивибратором. А если батарею GB1 подольше держать подключенной к зажиму Uвх. Произойдет то же, что и в предыдущих опытах, - на выходе мультивибратора появится только один импульс Попробуйте!

И еще один эксперимент: коснитесь вывода базы транзистора V1 каким - либо металлическим предметом, взятым в руку. Возможно, и в этом случае ждущий мультивибратор сработает - от электростатического заряда вашего тела. Повторите такие же опыты, но включив миллиамперметр в коллекторную цепь транзистора V2. При подаче управляющего сигнала коллекторный ток этого транзистора должен резко уменьшиться почти до нуля, а затем так же резко увеличиться до значения тока открытого транзистора. Это тоже импульс тока, но отрицательной полярности. Каков же принцип действия ждущего мультивибратора? В таком мультивибраторе связь между коллектором транзистора V2 и базой транзистора V1 не емкостная, как в автоколебательном, а резистивная - через резистор R3. На базу транзистора V2 через резистор R2 подается открывающее его отрицательное напряжение смещения. Транзистор же V1 надежно закрыт положительным напряжением элемента G1 на его базе. Такое состояние транзисторов весьма устойчиво. В таком состоянии они могут находиться сколько угодно времени. Но вот на базе транзистора V1 появился импульс напряжения отрицательной полярности. С этого момента транзисторы переходят в режим неустойчивого состояния. Под действием входного сигнала транзистор V1 открывается, а изменяющееся при этом напряжение на его коллекторе через конденсатор С1 закрывает транзистор V2. В таком состоянии транзисторы находятся до тех пор, пока не разрядится конденсатор С1 (через резистор R2 и открытый транзистор V1, сопротивление которого в это время мало). Как только конденсатор разрядится, транзистор V2 тут же откроется, а транзистор V1 закроется. С этого момента мультивибратор вновь оказывается в исходном, устойчивом ждущем режиме. Таким образом, ждущий мультивибратор имеет одно устойчивое и одно неустойчивое состояние . Во время неустойчивого состояния он генерирует один прямоугольный импульс тока (напряжения), длительность которого зависит от емкости конденсатора С1. Чем больше емкость этого конденсатора, тем больше длительность импульса. Так, например, при емкости конденсатора 50 мкФ мультивибратор генерирует импульс тока длительностью около 1,5 с, а с конденсатором емкостью 150 мкФ - раза в три больше. Через дополнительные конденсаторы - положительные импульсы напряжения можно снимать с выхода 1, а отрицательные с выхода 2. Только ли импульсом отрицательного напряжения, поданным на базу транзистора V1, можно вывести мультивибратор из ждущего режима? Нет, не только. Это можно сделать и подачей импульса напряжения положительной полярности, но на базу транзистора V2. Итак, вам остается экспериментально проверить, как влияет емкость конденсатора С1 на длительность импульсов и возможность управления ждущим мультивибратором импульсами положительного напряжения. Как практически можно использовать ждущий мультивибратор? По - разному. Например, для преобразования синусоидального напряжения в импульсы напряжения (или тока) прямоугольной формы такой же частоты, или включения на какое - то время другого прибора путем подачи на вход ждущего мультивибратора кратковременного электрического сигнала. А как еще? Подумайте!

Мультивибратор в генераторах и электронных переключателях

Электронный звонок. Мультивибратор можно применить для квартирного звонка, заменив им обычный электрический. Собрать же его можно по схеме, показанной на (рис. 4). Транзисторы V1 и V2 работают в симметричном мультивибраторе, генерирующем колебания частотой около 1000 Гц, а транзистор V3 - в усилителе мощности этих колебаний. Усиленные колебания преобразуются динамической головкой В1 в звуковые колебания. Если для звонка использовать абонентский громкоговоритель, включив первичную обмотку его переходного трансформатора в коллекторную цепь транзистора V3, в его футляре разместится вся электроника звонка, смонтированная на плате. Там же разместится и батарея питания.

Электронный звонок можно установить в коридоре и соединив его двумя проводами с кнопкой S1. При нажатии кнопки - в динамической головке появится звук. Так как питание на прибор подается только во время вызывных сигналов, двух батарей 3336Л соединенных последовательно или "Крона", хватит на несколько месяцев работы звонка. Желательный тон звука устанавливайте заменой конденсаторов С1 и С2 конденсаторами других емкостей. Мультивибратор, собранный по такой же схеме, может быть использован для изучения и тренировки в приеме на слух телеграфной азбуки - азбуки Морзе. В этом случае надо только кнопку заменить телеграфным ключом.

Электронный переключатель. Этот прибор, схема которого показана на (рис. 5), можно использовать для коммутации двух елочных гирлянд, питающихся от сети переменного тока. Сам же электронный переключатель можно питать от двух батарей 3336Л, соеди - ненных последовательно, или от выпрямителя, который бы давал на выходе постоянное напряжение 9 - 12 В.

Схема переключателя очень схожа со схемой электронного звонка. Но емкости конденсаторов С1 и С2 переключателя во много раз больше емкостей аналогичных конденсаторов звонка. Мультивибратор переключателя, в котором работают транзисторы V1 и V2, генерирует колебания частотой около 0,4 Гц, а нагрузкой его усилителя мощности (транзистор V3) является обмотка электромагнитного реле К1. Реле имеет одну пару контактных пластин, работающих на переключение. Подойдет, например, реле РЭС - 10 (паспорт РС4.524.302) или другое электромагнитное реле, надежно срабатывающее от напряжения 6 - 8 В при токе 20 - 50 мА. При включении питания транзисторы V1 и V2 мультивибратора попеременно открываются и закрываются, генерируя сигналы прямоугольной формы. Когда транзистор V2 открыт, отрицательное питающее напряжение через резистор R4 и этот транзистор подается на базу транзистора V3, вводя его в насыщение. При этом сопротивление участка эмиттер - коллектор транзистора V3 уменьшается до нескольких ом и почти все напряжение источника питания прикладывается к обмотке реле К1 - реле срабатывает и своими контактами подключает к сети одну из гирлянд. Когда транзистор V2 закрыт, цепь питания базы транзистора V3 разорвана, и он также закрыт, через обмотку реле ток не течет. В это время реле отпускает якорь и его контакты, переключаясь, подключают к сети вторую елочную гирлянду. Если вы захочете изменить время переключения гирлянд, то заменяйте конденсаторы С1 и С2 конденсаторами других емкостей. Данные резисторов R2 и R3 оставьте прежними, иначе нарушится режим работы транзисторов по постоянному току. Усилитель мощности, аналогичный усилителю на транзисторе V3, можно включить и в эмиттерную цепь транзистора V1 мультивибратора. В этом случае электромагнитные реле (в том числе - самодельные) могут иметь не переключающие группы контактов, а нормально разомкнутые или нормально замкнутые. Контакты реле одного из плеч мультивибратора будут периодически замыкать и размыкать цепь питания одной гирлянды, а контакты реле другого плеча мультивибратора - цепь питания второй гирлянды. Электронный переключатель можно смонтировать на плате из гетинакса или другого изоляционного материала и вместе с батареей питания поместить в коробку из фанеры. Во время работы переключатель потребляет ток не больше 30 мА, так что энергии двух батарей 3336Л или "Крона" вполне хватит на все новогодние праздники. Аналогичный переключатель можно использовать и для других целей. Например, для иллюминации масок, аттракционов. Представьте себе выпиленную из фанеры и разрисованную фигурку героя сказки "Кот в сапогах". Позади прозрачных глаз находятся лампочки от карманного фонаря, коммутируемые электронным переключателем, а на самой фигурке - кнопка. Стоит нажать кнопку, как кот тут же начнет подмигивать тебе. А разве нельзя использовать переключатель для электрификации некоторых моделей, например модели маяка? В этом случае в коллекторную цепь транзистора усилителя мощности можно вместо электромагнитного реле включить малогабаритную лампочку накаливания, рассчитанную на небольшой ток накала, которая станет имитировать вспышки маяка. Если такой переключатель дополнить тумблером, с помощью которого в коллекторную цепь выходного транзистора можно будет включать поочередно две такие лампочки, то он может стать указателем поворотов вашего велосипеда.

Метроном - это своеобразные часы, позволяющие по звуковым сигналам отсчитывать равные промежутки времени с точностью до долей секунды. Такие приборы используют, например, для выработки чувства такта при обучении музыкальной грамоте, во время первых тренировок по передаче сигналов телеграфной азбукой. Схему одного из таких приборов вы видите на (рис. 6).

Это тоже мультивибратор, но несимметричный. В таком мультивибраторе использованы транзисторы разной структуры: Vl - n - p - n (МП35 - МП38), V2 - p - n - p (МП39 - МП42). Это позволило уменьшить общее число деталей мультивибратора. Принцип же его работы остается таким же - генерация возникает за счет положительной обратной связи между выходом и входом двухкаскадного усилителя 3Ч; связь осуществляется электролитическим конденсатором С1. Нагрузкой мультивибратора служит малогабаритная динамическая головка В1 со звуковой катушкой сопротивлением 4 - 10 Ом, например 0.1ГД - 6, 1ГД - 8 (или телефонный капсюль), создающая при кратковременных импульсах тока звуки, похожие на щелчки. Частоту следования импульсов можно регулировать переменным резистором R1 примерно от 20 до 300 импульсов в минуту. Резистор R2 ограничивает ток базы первого транзистора, когда движок резистора R1 находится в крайнем нижнем (по схеме) положении, соответствующем наибольшей частоте генерируемых колебаний. Метроном можно питать от одной батареи 3336Л или трех элементов 332, соединенных последовательно. Ток, потребляемый им от батареи, не превышает 10 мА. Переменный резистор R1 должен иметь шкалу, отградуированную по механическому метроному. Пользуясь ею, простым поворотом ручки резистора можно установить нужную частоту звуковых сигналов метронома.

Практическая работа

В качестве практической работы, советую собрать схемки мультивибраторов представленные на рисунках урока, которые помогут осмыслить принцип работы мультивибратора. Далее предлагаю собрать очень интересный и полезный в бытовом хозяйстве "Имитатор электронного соловья ", на основе мультивибраторов, который можно использовать в качестве дверного звонка. Схема очень простая, надежная, работает сразу при отсутствии ошибок в монтаже и использовании исправных радиоэлементов. У меня в качестве дверного звонка используется уже 18 лет., по сей день. Нетрудно догадаться, что собрал я его - когда как и вы, был начинающим радиолюбителем.

Если разобраться, вся электроника состоит из большого числа отдельных кирпичиков. Это транзисторы, диоды, резисторы, конденсаторы, индуктивные элементы. А уже из этих кирпичиков можно сложить всё, что угодно.

От безобидной детской игрушки издающей, например, звук «мяу», до системы наведения баллистической ракеты с разделяющейся головной частью на восемь мегатонных зарядов.

Одной из очень известных и часто применяющихся в электронике схем, является симметричный мультивибратор, который представляет собой электронное устройство вырабатывающее (генерирующее) колебания по форме, приближающиеся к прямоугольной.

Мультивибратор собирается на двух транзисторах или логических схемах с дополнительными элементами. По сути это двухкаскадный усилитель с цепью положительной обратной связи (ПОС). Это значит, что выход второго каскада соединён через конденсатор со входом первого каскада. В результате усилитель за счёт положительной обратной связи превращается в генератор.

Для того чтобы мультивибратор начал генерировать импульсы достаточно подключить напряжение питания. Мультивибраторы могут быть симметричными и несимметричными .

На рисунке представлена схема симметричного мультивибратора.

В симметричном мультивибраторе номиналы элементов каждого из двух плеч абсолютно одинаковы: R1=R4, R2=R3, C1=C2. Если посмотреть на осциллограмму выходного сигнала симметричного мультивибратора, то легко заметить, что прямоугольные импульсы и паузы между ними одинаковы по времени. t импульса (t и ) = t паузы (t п ). Резисторы в коллекторных цепях транзисторов не влияют на параметры импульсов, и их номинал подбирается в зависимости от типа применяемого транзистора.

Частота следования импульсов такого мультивибратора легко высчитывается по несложной формуле:

Где f - частота в герцах (Гц), С - ёмкость в микрофарадах (мкФ) и R - сопротивление в килоомах (кОм). Например: С = 0,02 мкФ, R = 39 кОм. Подставляем в формулу, выполняем действия и получаем частоту в звуковом диапазоне приблизительно равную 1000 Гц, а точнее 897,4 Гц.

Сам по себе такой мультивибратор неинтересен, так как он выдаёт один немодулированный «писк», но если элементами подобрать частоту 440 Гц, а это нота Ля первой октавы, то мы получим миниатюрный камертон, с помощью которого можно, например, настроить гитару в походе. Единственно, что нужно сделать, это добавить каскад усилителя на одном транзисторе и миниатюрный динамик.

Основными характеристиками импульсного сигнала принято считать следующие параметры:

    Частота . Единица измерения (Гц) Герц. 1 Гц – одно колебание в секунду. Частоты, воспринимаемые человеческим ухом, находятся в диапазоне 20 Гц – 20 кГц.

    Длительность импульса . Измеряется в долях секунды: мили, микро, нано, пико и так далее.

    Амплитуда . В рассматриваемом мультивибраторе регулировка амплитуды не предусмотрена. В профессиональных приборах используется и ступенчатая и плавная регулировка амплитуды.

    Скважность . Отношение периода (Т) к длительности импульса (t ). Если длина импульса равна 0,5 периода, то скважность равна двум.

Исходя из вышеприведенной формулы, легко рассчитать мультивибратор практически на любую частоту за исключением высоких и сверхвысоких частот. Там действуют несколько другие физические принципы.

Для того чтобы мультивибратор выдавал несколько дискретных частот достаточно поставить двухсекционный переключатель и пять шесть конденсаторов разной ёмкости, естественно одинаковые в каждом плече и с помощью переключателя выбирать необходимую частоту. Резисторы R2, R3 так же влияют на частоту и скважность и их можно сделать переменными. Вот ещё одна схема мультивибратора с подстройкой частоты переключения.

Уменьшение сопротивления резисторов R2 и R4 меньше определённой величины зависящей от типа применяемых транзисторов может вызвать срыв генерации и мультивибратор работать не будет, поэтому последовательно с резисторами R2 и R4 можно подключить переменный резистор R3, которым можно подобрат частоту переключений мультивибратора.

Практическое применение симметричного мультивибратора очень обширно. Импульсная вычислительная техника, радиоизмерительная аппаратура при производстве бытовой техники. Очень много уникальной медицинской техники построено на схемах, в основе которых лежит тот самый мультивибратор.

Благодаря исключительной простоте и невысокой стоимости мультивибратор нашёл широкое применение в детских игрушках. Вот пример обычной мигалки на светодиодах .

При указанных на схеме величинах электролитических конденсаторов С1, С2 и резисторов R2, R3 частота импульсов будет 2,5 Гц, а значит, светодиоды будут вспыхивать примерно два раза в секунду. Можно использовать схему, предложенную выше и включить переменный резистор совместно с резисторами R2, R3. Благодаря этому можно будет посмотреть, как будет изменяться частота вспышек светодиодов при изменении сопротивления переменного резистора. Можно поставить конденсаторы разных номиналов и наблюдать за результатом.

Будучи ещё школьником, я собирал на мультивибраторе переключатель ёлочных гирлянд. Всё получилось, но вот когда подключил гирлянды, то мой приборчик стал переключать их с очень высокой частотой. Из-за этого в соседней комнате телевизор стал показывать с дикими помехами, а электромагнитное реле в схеме трещало, как из пулемёта. Было и радостно (работает же!) и немного страшновато. Родители переполошились ненашутку.

Такая досадная промашка со слишком частым переключением не давала мне покоя. И схему проверял, и конденсаторы по номиналу были те, что надо. Не учёл я лишь одного.

Электролитические конденсаторы были очень старые и высохли. Ёмкость их была небольшая и совсем не соответствовала той, что была указана на их корпусе. Из-за низкой ёмкости мультивибратор и работал на более высокой частоте и слишком часто переключал гирлянды.

Приборов, которыми можно было бы измерить ёмкость конденсаторов в то время у меня не было. Да и тестером пользовался стрелочным, а не современным цифровым мультиметром .

Поэтому, если ваш мультивибратор выдаёт завышенную частоту, то первым делом проверяйте электролитические конденсаторы. Благо, сейчас можно за небольшие деньги купить универсальный тестер радиокомпонентов , которым можно измерить ёмкость конденсатора.

Принципиальная схема мощного транзисторного мультивибратора с управлением, построен на транзисторах КТ972, КТ973. Многие радиолюбители начинали свой творческий путь со сборки простых радиоприёмников прямого усиления, несложныхусилителей мощности звуковой частоты и сборки простых мультивибраторов, состоящих из пары транзисторов, двух или четырёх резисторов и двух конденсаторов.

Традиционный симметричный мультивибратор обладает рядом недостатков, среди которых относительно высокое выходное сопротивление, затянутые фронты импульсов, ограниченное напряжение питания, невысокий КПД при работе на низкоомную нагрузку.

Принципиальная схема

На рис. 1. представлена схема управляемого симметричного двухфазного мультивибратора, работающего на звуковых частотах, нагрузка к которому подключается по мостовой схеме Благодаря этому, размах амплитуды сигнала на нагрузке почти вдвое превышает напряжение питания мультивибратора, что позволяет получитъ значительно большую громкость, по сравнению с тем, если бы нагрузка была бы включена в одно из плеч мультивибратора.

Кроме того, на нагрузку подаётся «настоящее» напряжение переменного тока, что значительно улучшает условия работы подключенной в качестве нагрузки динамической головки - отсутствует эффект вдавливания или выпячивания диффузора (в зависимости от полярности включения динамика). Также отсутствуют щелчки при включении или выключении мультивибратора.

Рис. 1. Принципиальна ясхема мощного мультивибратора на транзисторах КТ972, КТ973.

Симметричный двухфазный мультивибратор состоит из двух двухтактных плеч, напряжение на которых попеременно меняется с низкого уровня на высокий. Допустим, что при включении питания, первым открылся составной транзистор VТ2.

Тогда напряжение на выводах коллекторов транзисторов VТ1, VТ2 станет близко к нулю (VТ1 открыт, VТ2 закрыт) К точке соединения их коллекторов через токоограничительный резистор R12 подключен составной р-п-р транзистор VТ5, который откроется. К нагрузке будет приложено напряжение около 8 В при напряжении питания мультивибратора 9 В. С перезарядом конденсаторов С2, С4, мультивибратор переключится - VТ1, VТ6 откроются, VТ2, VТ5 закроются.

К нагрузке будет приложено такое же напряжение, но в обратной полярности. Частота переключения мультивибратора зависит от ёмкости конденсаторов С2, С4, и, в меньшей степени, от установленного сопротивления подстроечного резистора R7. При напряжении питания 9 В частоту можно перестраивать от 1,4 до 1,5 кГц.

При уменьшении сопротивления R7 ниже условного значения, генерация звуковых частот срывается. Следует отметить, что после запуска мультивибратор может работать без резисторов R5, R11. Форма напряжения на выходе мультивибратора близка к прямоугольной.

Резисторы R6, R8 и диоды VD1, VD2 защищают эмиттерные переходы транзисторов VТ2, VТ6 от пробоя, что особенно актуально при напряжении питания мультивибратора более 10В. Резисторы R1, R13 необходимы для устойчивой генерации, при их отсутствии мультивибратор может «хрипеть». Диод VD3 защищает мощные транзисторы от переполю-совки напряжения питания При его отсутствии и при достаточной мощности источника питания при переполюсовке напряжения встроенные защитные дирды транзисторов могут оказаться повреждёнными.

Чтобы расширить функциональные возможности этого мультивибратора, в него введена возможность включения/выключения при подаче напряжения положительной полярности на вход управления. Если управляющий вход никуда не подключен или напряжение на нём не более 0,5 В, транзисторы VТЗ, VТ4 закрыты, мультивибратор работает.

При подаче на вход управления напряжения высокого уровня, например, с выхода ТТЛШ. КМОП микросхем, датчика электрических или неэлектрических величин, например, датчика влажности, транзисторы VТЗ, VТ4 открываются, мультивибратор затормаживается. В таком состоянии мультивибратор потребляет ток менее 200 мкА, без учета тока через R2, R3, R9.

Детали и монтаж

Мультивибратор можно смонтировать на печатной плате размерами 70*50 мм, эскиз которой показан на рис. 2 Постоянные резисторы можно использовать любые малогабаритные. Подстроечный резистор РП1-63М, СП4-1 или аналогичный импортный. Оксидные конденсаторы К50-29, К50-35 или аналоги Конденсаторы С2, С4 - К73-9, К73-17, К73-24 или любые плёночные малогабаритные.

Рис. 2. Печатная плата для схемы мощного мультивибратора на транзисторах.

Диоды КД522А можно заменить на КД503. КД521. Д223 с любым буквенным индексом или импортными 1N914, 1N4148. Вместо диодов КД226А и КД243А подойдёт любой из серий КД226, КД257, КД258, 1 N5401 ...1 N5407.

Составные транзисторы КТ972А можно заменить любым из этой серии или из серии КТ8131, а вместо КТ973 любой из серии КТ973, КТ8130. При необходимости, мощные транзисторы устанавливают на небольшие теплоотводы. При отсутствии таких транзисторов, их можно заменить аналогами из двух транзисторов, включен ных по схеме Дарлингтона, рис. 3. Вместо маломощных п-р-п транзисторов КТ315Г подойдут любые из серий КТ312, КТ315, КТ342, КТ3102, КТ645, SS9014 и аналогичные.

Рис. 3. Принципиальная схема эквивалентной замены транзисторов КТ972, КТ973.

Нагрузкой этого мультивибратора может бытъ динамическая головка, телефонный капсюль, пьезокерамический излучатель звука, импульсный повышающий/понижающий трансформатор.

При использовании динамической головки с сопротивлением обмотки 8 Ом, следует учитывать, что при напряжении питания 9 В на нагрузку будет поступать 8 Вт мощности напряжения переменного тока. Поэтому, двух...четырёхваттная динамическая головка может бытъ повреждена уже через 1...2 минуты работы.

Налаживание

На рабочую частоту мультивибратора значительное влияние оказывает ёмкость нагрузки и напряжение питания. Например, при изменении напряжения питания от 5 до 15 В частота изменяется с 2850 до 1200 Гц при работе на мультивибратора на нагрузку в виде телефонного капсюля с сопротивлением обмотки 56 Ом. В области малых напряжений питания изменение рабочей частоты более значительно

Подбором сопротивлений резисторов R5, R11, R6, R8 можно задать форму импульсов почти строго прямоугольной при работе мультивибратора с конкретной подключенной нагрузкой при заданном напряжении питания.

Этот мультивибратор может найти применение в различных сигнальных устройствах, устройствах звукового оповещения, когда при небольшом имеющемся напряжении источника питания требуется получить значительную мощность на излучателе звука. Кроме того, его удобно использовать в преобразователях низкого напряжения в высокое, в том числе, работающих на низкой частоте осветительной сети 50 Гц.

Бутов А. Л. РК-2010-04.