Цветомузыка из светодиодной ленты схема. Как сделать цветомузыку на светодиодах своими руками


Цветомузыкальное оборудование, меняющее цвет, интенсивность, эффекты и ритм – неотъемлемого атрибута хорошей гулянки, способный поднять и задвигаться в такт музыке самого ленивого и меланхоличного из участников мероприятия. В этой статье мы обсудим нюансы цветомузыки на светодиодах, возможности сделать её своими руками и варианты применения в различных условиях.

С насыщением рынка светодиодным осветительным оборудованием, сферы его применения расширяются взрывными скачками и уже не ограничиваются исключительно дизайнерскими изысками в освещении интерьеров, лаконичностью и эффективностью при освещении офисов и рабочих освещений, или желанием сделать долговечную и качественную подсветку экстерьера зданий. Светодиодные лампы проникли во все сферы, где их колоссальный технологический отрыв, энергоэффективность, минимальные размеры при максимальной отдаче, могут сослужить добрую службу и принести пользу или эстетическое удовольствие – тюнинг автомобилей, фитолампы для выращивания домашних огородов, и, конечно, цветомузыки.

Цветомузыка на led-компонентах обладает рядом существенных преимуществ перед аналогами на устаревших лампах:

  • Маленький размер светодиодов в совокупности с энергоэффективностью порождают обилие возможных форм для создания светомузыкального оборудования, и речь идет не только о внешних форм-факторах, но и о возможностях применения светодиодов в самых различных эффектах при работе со светом и различными его цветами, ведь led-элемент может давать точечный поток света. Стробоскопы, прожекторы, дискошары и многое другое доступно для использования даже в домашних условиях.
  • Безопасность использования цветомузыки ни светодиодных излучателях максимальна, по сравнению с устаревшими лампами – диапазон рабочих температур led-элементов не превышает 60 градусов по Цельсию, а значит, опасений о возгорании каких-либо элементов домашнего декора или материалов просто не должно возникать. Пусть цвета заполнят ваш дом вместе с музыкой без каких-либо тревог, связанных с использованием светомузыкального оборудования.
  • Длительный срок эксплуатации цветомузыки для дома делает покупку такого оборудования целесообразной, ведь она рассчитана на 8000-10000 тысяч часов работы, то есть целый год бесперебойной службы. А с учетом того, что количество включений и выключений никак не сказывается на потребительских свойствах led-элементов, и большинство людей не устраивают круглосуточные вечеринки ежедневно, домашняя цветомузыка способна долгие годы радовать своего обладателя и его гостей.
  • Качество цвето- и светопередачи. Светодиодное освещение обладает самым широким спектром цветов и оттенков, что является одним из главных плюсов для цветомузыки как таковой, ведь разнообразие цветов играет важную роль в создании атмосферы. Так же, в отличие от лазерной цветомузыки, светодиодное оборудование безвредно для глаз и не способно повредить зрение при прямом попадании светового потока на сетчатку глаза.

Варианты создания светомузыкального освещения в домашних условиях

  1. Самый простой вариант – купить специальную переносной светильник или лампу, которые будут менять цвета или использовать сразу несколько цветов, с одним или несколькими эффектами. Таких вариантов очень много, они весьма распространены и бюджетны. Для начального уровня, чтобы порадовать себя и друзей незатейливой, но приятной игрой с ярким светом и цветами под музыку – будет вполне достаточно.
  1. Самый качественный вариант, если не сделать самому по самым сложным схемам – приобрести готовое решение, так называемые ЦМУ (Цветомузыкальные установки) . Это готовое решение, включающее в себя контролёр, который будет обрабатывать звуковой сигнал, превращая его в светомузыкальное представление, меняющие интенсивность и цвета потоки света, создавая эффект полноценной дискотеки, и непосредственно панели с диодами. ЦМУ просты в инсталляции, и если вы хотите создать дискотеку дома своими руками – это вполне хороший вариант. В основе таких ЦМУ может быть спектральное разложение по частотам, когда каждой частоте будет соответствовать какой-либо цвет, либо заданные регулировки с всевозможными эффектами и их чередованием, которые можно настроить с помощью комплектного пульта ДУ.

  1. Третий вариант – собрать цветомузыку самостоятельно. В интернете очень много подробных схем, по которым человек, имеющий опыт работы с электроникой, сможет сделать цветомузыку для дома своими руками. Можно обойтись и без схем, использовав приобретенный отдельно цветомузыкальный контролёр, и, допустим, несколько отрезков RGB-ленты. На самом деле, что касается осветительных приборов для эффектов дискотеки, созданных своими руками – их может быть реально огромное множество. Схем очень много, а также и видео инструкций, как по этим схемам собрать оборудование. Есть схемы с использованием внешних микрофонов, собранные по этим схемам осветительные приборы будут менять цвет и эффекты в точности под играющую мелодию.

Предлагаемые в интернете схемы для того, чтобы сделать цветомузыку своими руками, максимально разнообразны – от простейших, когда будет меняться цвет RGB-ленты, до самых сложных, со множеством эффектов, затуханий и переливов. В зависимости от навыков, можно подобрать подходящий вариант, найти нужную схему и создать нечто уникальное, светооборудование, которое будет радовать вас и ваших гостей переливами всех цветов. Если вы не готовы сделать цветомузыку на светодиодах самостоятельно, своими руками, то можно обратиться к рынку готовых решений и наполнить свой дом разнообразием цветов и радостью.

Структурно, любая цветомузыкальная(светомузыкальная) установка состоит из трех элементов. Блока управления, блока усиления мощности и выходного оптического устройства.

В качестве выходного оптического устройства можно использовать гирлянды, можно оформить его в виде экрана(классический вариант) или применить электрические светильники направленного действия - прожектора, фары.
Т. е. подходят любые средства, позволяющие создавать определенный набор красочных световых эффектов.

Блок усиления мощности - это усилитель(усилители) на транзисторах с тиристорными регуляторами на выходе. От параметров элементов использованых в нем зависит напряжение и мощность источников света выходного оптического устройства.

Блок управления контролирует интенсивность света, и чередование цветов. В сложных специальных установках, предназначенных для оформления сцены во время различных видов шоу - цирковых, театральных и эстрадных представлений этот блок управляется вручную.
Соответствено, требуется участие как минимум - одного, а максимум - группы операторов-осветителей.

Если блок управления контролируется непосредственно музыкой, работает по какой - либо заданной программе, то цветомузыкальная установка считается - автоматической.
Именно такого рода "цветомузыки" обычно собирают своими руками начинающие конструкторы - радиолюбители, на протяжении 50-ти последних лет.

Самая простая (и популярная) схема "цветомузыки" на тиристорах КУ202Н.


Это самая простая и пожалуй, самая популярная схема цветомузыкальной приставки, на тиристорах.
Тридцать лет назад я впервые увидел вблизи полноценную, работающую "светомузыку". Ее собрал мой однокласник, с помощью старшего брата. Это была именно эта схема. Несомненным ее достоинством является простота, при достаточно явном разделение режимов работы всех трех каналов. Лампы не мигают одновременно, красный канал низких частот устойчиво моргает в ритм с ударными, средний - зеленый откликается в диапазоне человеческого голоса, высокочастотный синий реагирует на все остальное тонкое - звенящее и пищащее.

Недостаток один - необходим предварительный усилитель мощности на 1-2 ватта. Моему товарищу приходилось почти "на полную" врубать свою "Электронику" для того, что бы добиться достаточно устойчивой работы устройства. В качестве входного трансформатора был использован понижающий тр-р от радиоточки. Вместо него можно использовать любой малогабаритный понижающий сетевой транс. Например, с 220 до 12 вольт. Только подключать его нужно наоборот - низковольтной обмоткой на вход усилителя. Резисторы любые, мощностью от 0,5 ватт. Конденсаторы тоже любые, вместо тиристоров КУ202Н можно взять КУ202М.

Схема "цветомузыки" на тиристорах КУ202Н, с активными частотными фильтрами и усилителем тока.

Схема предназначена для работы от линейного звукового выхода(яркость ламп не зависит от уровня громкости).
Рассмотрим подробнее, как она работает.
Звуковой сигнал подается с линейного выхода на первичную обмотку разделительного трансформатора. С вторичной обмотки трансформатора сигнал поступает на активные фильтры, через резисторы R1, R2, R3 регулирующие его уровень.
Раздельная регулировка необходима для настройки качественной работы устройства, путем выравнивания уровня яркости, каждого из трех каналов.

С помощью фильтров происходит разделение сигналов по частоте - на три канала. По первому каналу идет самая низкочастотная составляющая сигнала - фильтр обрезает все частоты выше 800 гц. Настройка фильтра производится с помощью подстроечного резистора R9. Номиналы конденсаторов С2 и С4 в схеме указаны - 1 мкФ, но как показала практика - их емкость следует увеличить, минимум, до 5 мкф.

Фильтр второго канала настроен на среднюю частоту - примерно от 500, до 2000 гц. Настройка фильтра производится с помощью подстроечного резистора R15. Номиналы конденсаторов С5 и С7 в схеме указаны - 0,015 мкФ, но их емкость следует увеличить, до 0,33 - 0,47 мкф.

По третьему, высокочастотному каналу проходит все что выше 1500(до 5000) гц. Настройка фильтра производится с помощью подстроечного резистора R22. Номиналы конденсаторов С8 и С10 в схеме указаны - 1000пФ, но их емкость следует увеличить, до 0,01 мкФ.

Далее, сигналы каждого канала в отдельности детектируются(используются германиевые транзисторы серии д9), усиливаются и подаются на оконечный каскад.
Оконечный каскад выполняется на мощных транзисторах, либо на тиристорах. В данном случае, это тиристоры КУ202Н.

Далее, идет оптическое устройство, конструкция и внешний которого зависит от фантазии конструктора, а начинка(лампы, светодиоды) - от рабочего напряжения и максимальной мощности выходного каскада.
В нашем случае - это лампы накаливания 220в, 60вт(если установить тиристоры на радиаторы - до 10 шт на канал).

Порядок сборки схемы.

О деталях приставки.
Транзисторы КТ315 можно заменить другими кремниевыми n-p-n транзисторами со статическим коэффициентом усиления не менее 50. Постоянные резисторы – МЛТ-0,5, переменные и подстроечные – СП-1, СПО-0,5. Конденсаторы – любого типа.
Трансформатор Т1 с коэффициентом 1:1, поэтому можно использовать любой с подходящим количеством витков. При самостоятельном изготовлении можно использовать магнитопровод Ш10х10, а обмотки намотать проводом ПЭВ-1 0,1-0,15 по 150-300 витков каждая.

Диодный мост для питания тиристоров(220в) выбирают исходя из предпологаемой мощности нагрузки, минимум - 2А. Если количество ламп на каждый канал увеличить - соответственно возрастет потребляемый ток.
Для питания транзисторов(12в) можно использовать любой стабилизированный блок питания расчитанный на рабочий ток минимум - 250 мА(а лучше - больше).

Сначала, каждый канал цветомузыки собирается в отдельности на макетной плате.
Причем, сборку начинают с выходного каскада. Собрав выходной каскад проверяют его работоспособность, подав на его вход сигнал достаточного уровня.
Если этот каскад отрабатывает нормально, - собирают активный фильтр. Далее - проверяют снова работоспособность того, что получилось.
В итоге, после испытания имеем - реально работающий канал.

Подобным образом необходимо собрать и отстроить все три канала. Подобное занудство гарантирует безусловную работоспособность устройства после "чистовой" сборки на монтажной плате, если работа проведена без ошибок и с применением "испытанных" деталей.

Возможный вариант печатного монтажа(для текстолита с односторонним фольгированием). Если использовать более габаритные конденсаторе в канале самых низких частот, расстояния между отверстиями и проводниками придется изменить. Применение текстолита с двухсторонним фольгированием может быть более технологичным вариантом - поможет избавиться от навесных проводов-перемычек.


Использование каких - либо материалов этой страницы, допускается при наличии ссылки на сайт

Цветомузыка на RGB-светодиодах

Пик популярности цветомузыкальных установок приходится на 80-е годы прошлого века. Сейчас о них как-то почти позабыли. И все же, время не стоит на месте, и есть новые технологии, способные оживить «цветомузыку» в новом виде. Вот, например, трехцветные светодиодные RGB-ленты или гирлянды, они могут быть значительной длины и работать даже как осветительный прибор. Только, управляются они обычно по программе, как ёлочные гирлянды или реклама, ну или можно менять с их помощью цвет освещения в помещении. А если все это будет завязано на музыку? Представьте, экран ЦМУ размером с потолок! Но для этого нужно соответствующее устройство управления.

На рисунке показана экспериментальная схема ЦМУ, работающая с RGB-свето-диодной лентой или гирляндой. Все как у «типовой» ЦМУ, - три частотных канала, три выходных ключа, к которым соответственно подключены три цвета RGB-светодиодной ленты (или гирлянды).
Схема полосовых фильтров выполнена на микросхемах LM567.

Микросхемы LM567 являются тональными декодерами с ФАПЧ, они предназначены для работы в системах управления с частотным кодирование и представляют собой активные фильтры с очень узкой полосой захвата ФАПЧ. В данном случае, чтобы перекрыть весь звуковой диапазон хотя бы от 50 Гц до 12000 Гц на три полосы нужно расширить полосы захвата ФАПЧ микросхем. Полоса захвата ФАПЧ ИМС LM567 зависит от конденсатора на выводе 2, чем его емкость больше, тем уже полоса. Обычно там несколько мкФ, но здесь емкости этих конденсаторов уменьшены до 0,047 мкФ, в результате полоса захвата очень расширилась, и стала достаточной для использования микросхем LM567 в качестве фильтров в цветомузыкальной установке.

Диапазон входного напряжения ЗЧ на входе ИМС LM567 - 20-200 мВ, при частоте, соответствующей полосе настройки фильтра происходит захват. Если частота входного сигнала лежит в пределах полосы на выходе ИМС LM567 открывается ключ, между выводом 8 и общим минусом питания.

Входной сигнал поступает на разъем Х1, номинальная величина входного напряжения ЗЧ должна быть в районе 100-300 мВ. Это напряжение поступает на три регулятора на переменных резисторах R1, R6, R11. Этими переменными резисторами в процессе работы устройства устанавливаются оптимальные уровни ЗЧ сигналов по частотным каналам, конкретно для каждого случая воспроизведения, так чтобы получить желаемый эффект.

Значения средних частот полос устанавливаются RC-цепями, подключенными между выводами 5 и 6 микросхем LM567. Подсчитать их можно по формуле:

F = 1/ (1,1*R*C)


F - частота в кГц, R - сопротивление в кОм, С - емкость в мкФ.

Соответственно, центральные частоты выбраны 150 Гц, 900 Гц, и 9000 Гц. При желании, пользуясь вышеуказанной формулой можно выбрать другие центральные частоты полос. При этом можно подбирать не только конденсаторы, но и резисторы (включенные между выводами 5 и 6 ИМС LM567).

Рассмотрим работу на примере низкочастотного канала на А1. Пока сигнала частотой в полосе частот фильтра нет, либо его уровень мал, на выходе, на выводе 8 А1 будет напряжение логической единицы (выходной ключ закрыт, выход подтянут к плюсу питания через резистор R2). На элементах D1.1-D1.2 выполнен триггер Шмитта, его выходом является выход элемента D1.1, поэтому когда на выходе А1 единица, на выходе D1.1 имеется логический ноль. Ключ на полевом мощном транзисторе VT1 закрыт и питание на R-часть светодиодной RGB-ленты не поступает.
Если на входе А1 есть напряжение ЗЧ с частотой в полосе частот фильтра, и его уровень достаточен для захвата, на выходе, на выводе 8 А1 будет напряжение логического нуля (выходной ключ открыт). На выходе D1.1 при этом - логическая единица. Транзистор VT1 открывается и включает питание R-части светодиодной RGB-ленты.

Аналогично работают и два других канала, среднечастотный на А2 и высокочастотный на А3, разница только в частоте входного напряжения ЗЧ.

В принципе, затворы полевых ключевых транзисторов можно и непосредственно подключить к выходам LM567, но, во-первых, схема будет работать наоброт, то есть, когда сигнала нет светодиодная лента будет гореть, а когда есть, - гаснуть. И во-вторых, транзисторы будут перегреваться, потому что будет затянут во времени процесс их открывания, и существенное время они будут находиться в среднем состоянии, когда на канале падает значительное напряжение, и мощность. Триггер Шмитта устраняет эти проблемы.
Монтаж выполнен на макетной плате.

Сложно найти такого человека, который не любил бы слушать музыку. Для удовлетворения данного желания приобретаются качественные музыкальные центры, колонки и иные устройства. Для получения еще большего удовольствия многие задумываются о создании специальных цветоэффектов, которые могут украсить любое звучание и создадут романтическую атмосферу на свидании или увеселительный настрой в процессе организации праздничной вечеринки. Цветомузыку также, как музыкальные центры, можно приобрести, а можно сделать и своими руками. Оптимальный вариант – сделать цветомузыку на светодиодах по одной из предложенных схем.

Преимущества светодиодной продукции

Современный рынок электроники представляет большое разнообразие светодиодных лент, которые обладают самыми разными цветовыми эффектами. С их помощью можно создать качественное точечное освещение, есть возможность сделать цветомузыку с мигающими или размытыми эффектами.

В отличии от обычных лампочек, светодиоды характеризуются большим количеством положительных характеристик. Среди основных преимуществ светодиодных лент можно выделить:

  • широкая и разнообразная цветовая гамма;
  • передача насыщенных цветов;
  • разные варианты исполнения – линейки, модули, дискретные элементы, RGB-ленты;
  • высокая скорость срабатывания;
  • минимальный объем потребляемой энергии.

Ленты можно использовать в домашних условиях, в клубах и в кафе, можно эффектно подсвечивать витрины. В данной статье более подробно будет описан вариант светодиодной цветомузыки для обычного домашнего применения.

Простая схема с одним светильником

Для начала стоит изучить простую схему цветомузыки. Это устройство, которое выполняется на одном светодиоде, транзисторе и резисторе. Питание на такую цветомузыку можно подавать от постоянного источника тока напряжением 6-12 вольт. Работает устройство по принципу усилительного каскада с общим эмиттером. Воздействие в виде меняющегося по частоте сигнала и амплитуды поступает на основную базу. Как только частота колебаний превышает определенное пороговое значение, открывается транзистор и светодиод сразу вспыхивает.

Данная схема имеет один недостаток – темп мигания светодиода зависит полностью от уровня производимого звукового сигнала. Говоря иными словами, световой эффект будет активироваться только на определенном уровне производимой музыкальным центром громкости. При снижении интенсивности звучания свечение будет постоянным с редкими подмигиваниями.

Схема с одноцветной лентой

Данная цветомузыка на транзисторе собирается с применением светодиодной ленты в нагрузке. Для организации такой цветомузыки потребуется увеличить питание до 12 В, найти и установить транзистор с максимальным током коллектора, который превышает ток нагрузки, также потребуется пересчитать общий номинал резистора. Подобная цветомузыка достаточно проста, выполнена на одной одноцветной светодиодной ленте и идеально подойдет для начинающих радиолюбителей. Собрать ее можно без особых проблем в домашних условиях.

Простая трёхканальная схема

Чтобы получить цветомузыку, лишенную всех перечисленных выше недостатков, стоит использовать специальный трехканальный преобразователь звука. Питается такая схема постоянным напряжением 9 В и в состоянии эффективно засветить по одному или два светодиода в каждом канале. Среди основных конструкционных элементов, которыми характеризуется такая цветомузыкальная схема, можно отметить:

  • три независимых усилительных каскада, которые собираются на транзисторах категории КТ315 (КТ3102);
  • в нагрузку транзисторов включены светодиоды разного цвета;
  • для элемента предварительного усиления может быть использован сетевой небольшой трансформатор понижающего характера.

Входящий сигнал подается на вторичную обмотку трансформатора, который в свою очередь выполняет две основные функции – развязывает на гальваническом уровне два устройства, а также усиливает звук с основного линейного выхода. После этого сигнал поступает на три параллельно расположенных и включенных фильтра, собранные на базе RC-цепей. Они работают на индивидуальной частотной полосе, которая прямо зависит от номинала конденсатора и резистора.

Цветомузыка с RGB лентой

Данная схема приставки осуществляет работу от 12 вольт и идеально подходит для установки на авто. Такая цветомузыка оптимально совмещает в себе основные функции ранее рассмотренных схем и в состоянии работать, как в режиме светильника, так и цветомузыки. Второй режим достигается за счет особого бесконтактного управления RGB-лентой посредством микрофона. Что касается режима светильника, то он основан на одновременном запуске свечения зеленого, красного и синего светодиода на полную мощность. Выбор режима можно осуществлять посредством специального переключателя, который находится на специальной плате.

Чтобы понять, как осуществляет работу данная приставка, стоит изучить ее последовательность действий. Основным источником сигнала здесь является микрофон, преобразующий колебания звука, исходящей от фонограммы . Полученный сигнал незначителен, потому требует усиления. Добиться этого можно посредством применения транзистора или специального операционного усилителя. После этого запускается автоматический регулятор уровня АРУ. Он эффективно удерживает колебания звука в разумных пределах и подготавливает его к последующей обработке. Встроенные фильтры разделяют сигнал на три части, каждая из которых работает в одном определенном частотном диапазоне. В завершении потребуется просто усилить предварительно подготовленный сигнал тока. Для этой цели используются специальные транзисторы, которые работают в ключевом режиме.

Приобретение готового ЦМУ

Если нет желания сделать цветомузыку для использования в домашних условиях, можно приобрести ЦМУ, то есть цветомузыкальную установку. Это готовое функциональное решение, в составе которого присутствует контроллер. Он будет обрабатывать звук, преобразуя его в светомузыкальное визуальное представление. В процессе воспроизведения света будет меняться его интенсивность и цветовое решение, создавая тем самым эффект самой настоящей дискотеки. Также в состав устройства ЦМУ входит панель со встроенными диодами.

В основе данных приспособлений может находиться спектральное разложение по частотам, где каждой из них будет соответствовать определенное цветовое решение или предварительно заданные регулировки с самыми разными эффектами и их чередованием. Осуществлять их настройку можно посредством входящего в комплект пульта дистанционного управления.

Важно! Современные ЦМУ очень просты в процессе инсталляции и настройки. Это идеальное решение для организации домашней вечеринки или дискотеки.

Заключение

Схем для самостоятельного выполнения установок цветомузыки существует достаточно много. Можно подобрать достаточно простой вариант, где просто будет меняться цвет RGB-ленты, до довольно сложных, которые в процессе работы будут создавать большое количество разнообразных эффектов, переливов и затуханий. В прямой зависимости от навыков можно выбрать и выполнить подходящий вариант. Достаточно немного потрудиться и создать что-то по-настоящему уникальное, это будет светооборудование, радующее переливами самых разных цветовых оттенков. Также не стоит забывать, что всегда есть возможность купить готовое решение цветомузыки и наполнить свой дом цветовыми оттенками и радостью.

Конкурс начинающих радиолюбителей
“Моя радиолюбительская конструкция”

Конкурсная конструкция начинающего радиолюбителя
“Пятиканальная светодиодная цветомузыка”

Здравствуйте уважаемые друзья и гости сайта!
Представляю вашему вниманию третью конкурсную работу (второго конкурса сайта) начинающего радиолюбителя. Автор конструкции: Морозас Игорь Анатольевич :

Пятиканальная светодиодная цветомузыка

Здравствуйте радиолюбители!

Как и у многих новичков основная проблема была с чего начать, какой будет мое первое изделие. Начал с того, чтобы я хотел приобрести домой в первую очередь. Первое – это цветомузыка, второе – это высококачественный усилитель для наушников. Начал с первого. Цветомузыка на тиристорах вроде как избитый вариант, решил собрать цветомузыку для светодиодных RGB лент. Предоставляю Вам первую свою работу.

Схема цветомузыки взята из интернета. Цветомузыка простая, на 5 каналов (один канал –белый фоновый). К каждому каналу можно подключить светодиодную ленту, но для ее работы на входе необходим усилитель сигнала не высокой мощности. Автор предлагает применить усилитель с компьютерных колонок. Я пошел из сложного, собрать схему усилителя по даташиту на микросхеме ТДА2005 2х10 Вт. Этой мощности мне кажется достаточно, даже с запасом. Прилежно перечерчиваю все схемы в программе sPLAN 7.0

Рис.1 Схема цветомузыки с усилителем входного сигнала.

В схеме цветомузыки все конденсаторы электролитические, напряжением 16-25v. Где необходимо соблюдать полярность стоит знак «+», в остальных случаях изменение полярности не влияет на мигание светодиодов. По крайне мере я этого не заметил. Транзисторы КТ819 можно заменить на КТ815. Резисторы мощностью 0,25 Вт.

В схеме усилителя микросхему обязательно надо ставить на радиатор не менее 100см2. Конденсаторы электролитические напряжением 16-25v. Конденсаторы С8,С9,С12 пленочные, напряжением 63v. Резисторы R6,R7 мощностью 1 Вт, остальные 0,25Вт. Переменный резистор R0- сдвоенный, сопротивлением 10-50 ком.

Блок питания я взял заводской импульсный мощностью 100Вт, 2х12v, 7А

В выходной день как и полагается поездка на радио рынок для приобретения радиодеталей. Следующая задача нарисовать печатную плату. Для этого выбрал программу Sprint-Layout 6.0. Её советуют радиоспециалисты для начинающих. Изучается она легко, я в этом убедился.

Рис 2. Плата цветомузыки.

Рис 3. Плата усилителя мощности.

Платы изготавливал по ЛУТ технологии. Об этой технологии много информации в интернете. Мне нравиться, когда выглядит по заводскому, поэтому ЛУТ сделал и со стороны деталей тоже.


Рис 3,4 Сборка радиодеталей на плату

Рис 5. Проверяю работоспособность после сборки

Как всегда самое «сложное» при собирании радиосхемы – это укомплектовать все в корпус. Корпус я купил готовый в радиомагазине.


Лицевую панель я сделал таким образом. В программе Фотошоп нарисовал внешний вид лицевой панели где должны быть установлены переменные резисторы, выключатель и светодиоды по одному с каждого канала. Готовый рисунок распечатал струйным принтером на тонкой глянцевой фотобумаге.


На обезжиренную приготовленную панель с отверстиями наклеиваю столярным клеем фотобумагу:


После чего ложу панели под так называемый пресс. На сутки. В качестве пресса у меня блин от штанги на 15 кг:


Окончательная сборка:


Вот что получилось:

Приложения к статье:

(2.9 MiB, 2,909 hits)

Уважаемые друзья и гости сайта!

Не забывайте высказывать свое мнение по конкурсным работам и принимайте участие в голосовании за понравившуюся конструкцию на форуме сайта. Спасибо.

Некоторые предложения для тех, кто будет повторять конструкцию:
1. К такому мощному стереоусилителю можно подключить колонки, тогда получится два устройства в одном – цветомузыка и качественный усилитель низкой частоты.
2. Даже если полярность включения электролитических конденсаторов в схеме цветомузыки не влияет на ее работу, наверное лучше соблюдать полярность.
3. На входе цветомузыки, наверное лучше поставить входной узел для суммирования сигналов с левого и правого каналов (). У автора, судя по схеме, на высокочастотный канал цветомузыки (синий) подается сигнал с правого канала усилителя, а на остальные каналы цветомузыки подается сигнал с левого канала усилителя, но наверное лучше подавать сигнал на все каналы с сумматора звуковых сигналов.
4. Замена транзистора КТ819 на КТ815 подразумевает уменьшение количества возможного подключения светодиодов.